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Abstract. In recent years, considerable efforts based on convolutional
neural networks have been devoted to age estimation from face images.
Among them, classification-based approaches have shown promising re-
sults, but there has been little investigation of age differences and ordinal
age information. In this paper, we propose a ranking objective with two
novel schemes jointly performed with an age classification objective to
take ordinal age labels into account. We first introduce relative triplet
sampling in which a set of triplets is constructed considering the relative
differences in ages. This also addresses the problem of having limited
triplet candidates, that occurs in conventional triplet sampling. We then
propose the scale-varying ranking constraint, which decides the impor-
tance of a relative triplet and adjusts a scale of gradients accordingly. Our
adaptive ranking loss with relative sampling not only lowers the general-
ization error but ultimately has a meaningful performance improvement
over the state-of-the-art methods on two well-known benchmarks.

Keywords: Age estimation · Triplet ranking · Joint loss · Deep learning.

1 Introduction

There has been a growing interest in age estimation from face images due to a
variety of potential applications [1–3]. As in other computer vision fields [4–8],
considerable efforts based on Convolutional Neural Networks (CNN) have been
devoted to age estimation. Depending on tasks, age estimation can be largely
divided into classification of age groups or direct prediction of age values, i.e.
the regression task.

In the field of age estimation, CNNs have been widely exploited in a variety
of different approaches. To classify age groups, Levi et al. [9] used vanilla CNN
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Fig. 1: When we infer the age of the woman in the center, (center) classification
loss considers only its label, (left) ranking loss considers the age difference of
a triplet, which is an additional clue for inferencing the age, and (right) our
adaptive triplet ranking loss considers the scale of differences, so that larger
ranking loss is applied to the triplet.

with N -class probability outputs, which gives a baseline performance on Adi-
ence benchmark dataset [10]. To better estimate ages from face images, studies
using transferred CNN [2] and attention models [3] have also been proposed.
Meanwhile, studies have been conducted to predict age values beyond the age
group classification. Early investigations involved a three-layer CNN regression
model with a Gaussian loss [1]. However, recent experiments have shown that
training a CNN directly for regression loss is unstable since outliers cause a
larger generalization error [11]. This led to different approaches to estimate age
values such as distribution-related loss [12–15], ordinal ranking strategy [16, 17],
bias-analysis [18], and classification loss [11, 3]. Among them, methods based on
classification [11, 3] showed the most simple yet powerful results in large scale
datasets in the wild.

Crucially, the classification loss, i.e. cross-entropy loss, however, does not re-
flect the ordinal characteristics of age labels; it focuses on whether the predicted
label is correct, but does not care about the degree of error between a prediction
and its target value. As discussed later in the experiment, this leads to a large
performance gap between training and validation sets. To address the issue, we
take a feature learning approach by an end-to-end learning objective for CNN,
which is configured jointly from the proposed ranking constraint as well as the
classification loss. The classification loss is used to predict the exact age, while
our adaptive ranking constraint, inspired by the triplet ranking loss [19–21] and
classification-ranking joint loss [22], acts like a regularizer and consequently helps
improve the performance. Meanwhile, large-margin softmax loss [23, 24] is sug-
gested to make the conventional classification loss produce more discriminative
feature space which results in better classification performance. However, the
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Fig. 2: Overall network framework of our method. In the bottleneck layer, we
apply the adaptive triplet ranking strategy (LT : Eq. 6) by selecting triplets
and computing the scale-varying triplet ranking loss. Our final objective jointly
includes both the ranking (LT : Eq. 6) and classification (LC : Eq. 9) losses si-
multaneously.

approach can be applied when each inter-class relation is the same throughout
all pairs of classes; while age pairs have different relations in themselves.

The main difference between conventional triplet loss and our proposed rank-
ing constraint is twofold: relative triplet sampling and scale-varying ranking.
Generally, in the conventional triplet loss, triplets consist of two samples with
the same label (anchor and positive) and a sample with a different label (nega-
tive), and the loss aims to separate the positive pair from the negative pair by
a constant margin in the embedding space.

We, however, argue that applying ranking loss by using a constant margin
in age estimation cannot fully exploit the ordinal information in age labels.
To solve this problem, we first alleviate the existing rigid selection criterion by
suggesting relative triplet sampling, where a sample relatively close to the anchor
is positive, otherwise negative. The proposed sampling creates more diversity in
the triplets than the conventional one, and ultimately makes it possible to apply
the following ranking constraint efficiently.

Once the relative triplets are sampled, we then apply the scale-varying rank-
ing loss which automatically decides the importance of a triplet and accordingly
adjusts scales of gradients. This enables for a model to learn a ranking without a
fixed margin constant and also act like a regularizer, which prevents overfitting
of a model. Fig. 1 illustrates the concept and purpose of the proposed method.

The main contributions of this study are as follows: (i) We propose an adap-
tive, scale-varying ranking loss that prevents overfitting of a model by acting
as a regularizer, while assisting in the improvement of the estimation perfor-
mance. To our knowledge, this is the first attempt to utilize a triplet ranking
method to efficiently train a model for age estimation. (ii) To address the lack
of possible triplets caused by the conventional triplet sampling, we suggest the
relative triplet sampling which also aids the successful application of the scale-
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varying ranking loss. (iii) We perform extensive experiments in two well-known
benchmarks and show meaningful improvement over the state-of-the-art meth-
ods, which demonstrates the efficiency of joint training of our ranking loss and
the classification objective.

2 Triplet Ranking with Classification

Our method is based on an end-to-end trainable deep convolutional neural net-
work (see Fig. 2), which has the scale-varying triplet ranking module and a
softmax output. In the network, our final goal is to estimate a correct age by the
softmax layer when a face image is given. While not directly related to the age
inference, the triplet ranking module accommodates the relative age difference
given a triplet, leading to better age estimation. As a result, our final objec-
tive function includes both triplet ranking and classification loss. In the next
sub-sections, we introduce our suggested loss functions in detail.

2.1 Relative Triplet Sampling

Sampling triplets is an essential part of a triplet ranking loss. Conventional
applications utilizing a triplet loss deal with binary labels, i.e., whether or not
two samples belong to the same class. In other words, triplet samples, (a, p, n),
commonly called an anchor, a positive, and a negative samples, are chosen, when
a and p are in the same class, but a and n are not.

While ages of two faces can be treated as the same or not, we found that it is
less effective for ordinal classes like age. One aspect is that the pool of possible
triplets in this perspective is restricted. Suppose that we have a mini-batch of
size N with an equal number of samples from each class and we have K classes
of age labels. If we constrain the positive sample to have the same age label as
the anchor for the conventional ranking loss, the pool size of the triplets for a
mini-batch becomes O(N3/K). Since K can be large for an age regression task,
e.g., MORPH dataset has 60 classes of age, this approach is subject to severely
limited combinations of triplets.

When it comes to age, we can better define the positive and the negative
samples by a relative measure. Formally, we sample features from a d-dimensional
embedding space in Rd, which is built by a CNN, f , embedding an image input
x into f(x) ∈ Rd. Assume that we have a mini-batch X of a size N with its
corresponding set of age labels Y , which contains positive real numbers; i.e.,
X = {x1, x2, · · · , xN} and Y = {y1, y2, · · · , yN}. We then sample every possible
(f(xa), f(xp), f(xn)), simply dented by (fa, fp, fn), such that the relative triplet
satisfies |ya − yp| < |ya − yn|. In other words, the set of our chosen triplets is:

T = {(fa, fp, fn) | a 6= p 6= n ∩ |ya − yp| < |ya − yn|}. (1)

As a result, the chosen relative triplets satisfy that the age difference between the
pair of the anchor and the positive must be less than the one between the anchor
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Fig. 3: Schematic visualization of two dimensional embedding space (bottleneck)
where similar age samples should be located closer. The left triplet shows a
wider discrepancy between age labels and their features in the space, compared
to that of the right one. The left triplet should be treated more importantly with
its update for learning the feature.

and the negative. This approach creates more diversity in the triplets compared
to the traditional methods, since it has a pool of O(N3) triplets, which is K
times diverse than the conventional one. When used with our adaptive ranking
loss, this in turn results in better performance (Table. 1a) and embedding space
(Fig. 5).

2.2 Scale-Varying Triplet Ranking Loss

When a triplet ranking is used for representation learning [25, 26, 19], its loss for-
mulation directly utilizes a distance function. For instance, [25] used the squared
L2 distance between two features:

L =
∑
S

max(0, d(fa, fp)− d(fa, fn) +m), (2)

where m is a margin constant, and d(a, b) = ‖a− b‖22. This loss targets a goal
in which the difference between d(fa, fp) and d(fa, fn) should be larger than m.

Unfortunately, this approach requires the margin constant, and fixing m as
a constant for a diverse set of triplets can limit the effectiveness of this strategy.
This ineffectiveness is caused, mainly because age triplets may have different
importance for learning the feature space – some triplets need a larger m, while
others need a smaller m, which is conceptually visualized in Fig. 3.

To design a loss that considers discrepancies in triplets, we propose to use the
cross-entropy loss for relative triplets, by normalizing the difference of distances
with the softmax function. It enables us to use a loss function, the scale-varying
ranking loss, considering our relative triplets, without the margin constant used
in the conventional ranking loss.

To compute the loss, we start with a set of relative triplets T . Given T , we
calculate a normalized version of positive distance, d+, and negative distance,
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d−. Inspired by [22] we normalize the distances as the following:

d+ =
exp(d(fa, fp))

exp(d(fa, fp)) + exp(d(fa, fn))
, d− =

exp(d(fa, fn))

exp(d(fa, fp)) + exp(d(fa, fn))
.

(3)

Considering that d+ and d− are softmax outputs, we apply the cross-entropy
loss for the relative triplet as:

lT (d+, d−) = −t− log(d−)− t+ log(d+) = − log(d−), (4)

where (t+, t−) = (0, 1) are our target values; this results in adjusting our feature
space such that d+ approaches to 0 and d− to 1.

Triplets chosen from training datasets (Eq. 1) could have largely varying
importance in learning features. For example, the triplet on the left in Fig. 3
is more important case than the one on the right, since a desirable update for
the former case should be stronger than the latter due to its larger discrepancy.
If we simply use the cross-entropy loss (Eq. 4), gradients of these two triplets
with varying importance are computed to be the same, which fails to achieve
the desirable updates.

To reflect the varying importance of relative triplets, we introduce a non-
uniform weighting function, ω(·), that measures the importance of a triplet, as
the following:

ω(fa, fp, fn) =
1 + ε

|ȳa − ȳp|+ ε
− 1, (5)

where ε is a small constant for preventing zero-division and ȳk = (yk−Ymin)/(Ymax−
Ymin) is a normalized label when the range of age labels in a dataset is

[
Ymin, Ymax

]
.

We then multiply it directly to the loss function, and the final ranking loss LT

is given by:

LT =
1

|T |
∑
T
ω(fa, fp, fn) · lT (d+, d−). (6)

Gradient analysis. Before moving on to our final training objective considering
the classification loss, we would like to point out that the proposed loss has the
same gradient as that of the conventional ranking loss, but it is different in
that the magnitude of our gradients are adjusted according to the importance of
relative triplets. Note that the conventional ranking loss (Eq. 2) has its derivative
with regard to fa, fp, and fn:

∂L

∂fa
=
∑
S

2(fn − fp),
∂L

∂fp
=
∑
S

2(fp − fa),
∂L

∂fn
=
∑
S

2(fa − fn), (7)

where S ⊂ T and S includes only triplets whose loss is not zeroed out by
max(0, ·), and the derivative equals 0 for T − S. Note that the margin constant
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does not have any effect on these gradients. On the contrary, our loss function (6)
has its derivative:

∂LT

∂fa
=
∑
T
α(fn − fp),

∂LT

∂fp
=
∑
T
α(fp − fa),

∂LT

∂fn
=
∑
T
α(fa − fn). (8)

where α = 2d+ω(fi, fj , fk). We can see that the directions of the derivatives
of two different loss functions are exactly the same, but the scale of ours are
regulated by two values: d+ and ω. d+ is moving toward zero during training,
and if d+ becomes near zero, our loss also comes closer to zero. The benefit of this
is that d+ softly slows down the learning when the training is adequately done,
without using any hyper-parameter such as the margin constant m. Note that
we have ω as well as d+, both of which together let the gradient scale depend
on the discrepancies of triplets – those with higher importance will have larger
updates, and those with less importance will get smaller updates.

2.3 Final Training Objective

Our final goal is to estimate an age value, and we thus set our model to have a
classification endpoint alongside the ranking part. To use age values for training
the classification network, we discretize the age values into K classes. We then
apply softmax to our classifier. Specifically, our classifier model has one hidden
layer with ReLU activation and a softmax layer after the embedding layer. To
formulate the classification loss, we have a classifier g, resulting in our whole
model to be g ◦ f , where ◦ indicates the function composition. Since g gives
probabilities of an input x belonging to each age class, g satisfies g(f(x)) ∈ RK ,

g(f(x))j > 0, and
∑K

j=1 g(f(x))j = 1, where the subscript j is used to represent
the probability belonging to the j-th class.

We also apply the softmax cross-entropy for the classification objective, the
same as for the relative triplet ranking loss. Our final classification loss is then
defined as:

LC = − 1

N

N∑
i=0

K∑
j=0

tij log(g(f(xi))j), (9)

where N is the batch-size, and tij is an indicator function that has 1 when xi
belongs to the class j, otherwise 0.

Based on our classification and triplet ranking losses, our final training ob-
jective function is defined as L = λLC +LT , where λ is a constant for controlling
the balance between LT and LC .

3 Experiments

We evaluate our approach with two popular age estimation databases against
two different tasks, age regression and age classification: MORPH Album 2 and
Adience datasets for each of the tasks respectively.
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Fig. 4: Training of the baseline and ours on the MORPH Album 2 dataset.

3.1 Implementation Details

We base our network model on the recent Inception-ResNet-V1 [27] implemented
with Tensorflow. We do not start the training from scratch, since our target
benchmark databases are relatively small. Instead, we utilize weights pretrained
with MS Celeb 1M [28] or ILSVRC2012 datasets.

When we train our model, we use Adam optimizer [29] with a small learning
rate 5×10−4, with a exponential decay. In all experiments, we set λ to 0.01, and
ε to 0.1. For stopping policy, we utilize a portion of a training set as a validation
set, and stop training when the validation accuracy converges. We augment
the training set with random cropping and color jittering including brightness,
saturation and hue. In the test phase, we do not use random cropping, rather
we obtain 10 samples by cropping and flipping four corners and the center of
an image. Then, we average the scores of the last layer from all 10 samples to
compute a final decision.

3.2 MORPH Album 2 Dataset

MORPH Album 2 dataset contains 55k facial images of 13k people, and has
been widely used by researchers since it provides various labels: identity, gender,
age, race, and so on. The MORPH also has been widely used in age estimation
field [30, 11, 17]. As Chang et al. suggested, the protocol for evaluation has been
settled – using 80% of image samples for training and the rest for testing.

Interestingly, we found that photos of an identity are taken in a short time
frame. Specifically, the max age deviation of a identity is only 1.9 years on
average. This implies that by perfectly identifying identities, we can achieve
down to 1.9 years for the mean absolute error (MAE). In our settings, we also
confirmed that using a baseline network pretrained for face verification with
MS-Celeb gives MAE of 2.43 years, which is far better than the state-of-the-art
result, 2.96 by [17].
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Loss Type MAE (year)

LC (Eq. 9) 3.27 ± 0.02
LC + Lc.triplet (Eq, 2) 2.93 ± 0.01
LC + LT (without T ) 2.91 ± 0.02
LC + LT (ours, Eq. 6) 2.87 ± 0.02

T : relative triplet selection (Eq. 1)

(a)

Method MAE (year)

MR-CNN [16] 3.27
DEX [11] 3.25
Ranking-CNN [17] 2.96
Ours (random sample)† 2.38
Ours (identity sample)‡ 2.87

†Pretrained on MS-Celeb, ‡Our split

(b)

Table 1: (a) 5-fold cross-validation MAE with the standard error (±e) on
MORPH by our split protocol. We also show the effectiveness of our method
over other joint (classification + triplet ranking) losses. (b) Comparison against
the state-of-the-art results.

Our split for evaluation. To get rid of the effect of identity, we suggest to split
the dataset in a way that training and testing sets have no duplicated identities.
Thus, we split 13,617 identities into 5 mutually exclusive sets, and perform 5-fold
cross-validation for evaluation.

Training-validation curves. Figure 4 shows training-validation curves, with
regard to MAE and two types of losses. The first graph plotting MAE, our
main target metric, shows a clear gap between the baseline (the solid, light blue
curve) and ours (the solid red curve). Especially, we can observe that the baseline
overfits in the early stage of training, while our model keeps improving MAE.
The second and third plots show that our ranking loss acts as a regularizer that
results in lower generalization error to unseen datasets in compensation for a
relatively higher training loss than the baseline model.

Comparison between loss types. We report different accuracies obtained by
different loss types in Table 1a. The baseline (LC) does not exploit the ranking
loss and has worse MAE than the others. We first compare the baseline to the
conventional ranking loss Lc.triplet (Eq. 2) adopted from [25] designed for face
recognition. Here the results show that the joint loss configuration using classi-
fication loss and ranking loss is effective enough in that they improve MAE in a
gap of 0.3 years over the baseline; this supports our fundamental condition that
a triplet loss aligns the age feature space better than a classification loss alone
does, by utilizing relative information in age labels. As we additionally use the
components we designed, performance is further improved. Without exploiting
the relative triplet selection, our ranking loss LT shows performance 0.02 years
better than Lc.triplet. Furthermore, ours works even better than the other joint
models when combined with the relative sampling method, by showing MAE
of 2.87, which is the lowest result among all the tested methods. This improve-
ment is mainly resulted from the relative sampling for diverse set of triplets, and
our adaptive scale-varying loss function (Eq. 6) leading to reasonable gradients
(Eq. 8) for ordinal classes.
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Fig. 5: Embedding space visualization of a bottleneck feature of the network by
T-SNE [31] method. Input from test instances of the MORPH database. Values
on the color bar are ages.

Comparisons against the state-of-the-art. In Table 1b, we compare our
model to other CNN models. First, we can conclude that if we use a facial domain
knowledge, i.e. pretraining on MS-Celeb, we can achieve the highest result based
on the previously widely used split protocol, i.e. random split by images [30, 11,
17]. When we use our harder split, i.e. random split by identity, we achieve MAE
of 2.87, which is also better than results from the prior state-of-the-art methods.
Embedding space visualization. Fig. 5 visualizes the embedding space com-
puted by only classification loss, joint loss with Lc.triplet [25], and our joint
model. Here, we can clearly observe that ours (Fig. 5c) much coherently aligns
the features along the one dimensional curve as a function of age than the oth-
ers (Fig. 5a-5b). That is because the classification loss is only aware of the class
difference rather than considering the ordinal characteristics; samples in similar
colors (and thus ages) as well as those in totally different colors are thus treated
equally, resulting in a rather fuzzy feature space. In the joint loss case (Fig. 5b),
the samples are aligned in more neat shape, but not in complete 1D curve, since
it has a fixed margin term without considering different importance of triplets.
On the other hand, the scale-varying ranking loss deliverately put those in sim-
ilar colors at close locations while those in different colors are pushed farther,
considering how close or far they should be.

3.3 Adience Benchmark

We also evaluate our model to the age classification task using the Adience
benchmark database [10]. The database includes 25k cropped face images taken
in unconstrained environments. It provides identity, gender, and age group labels
for each face image. For performance evaluation, we follow the protocol used by
[9]. The dataset consists of 5 splits where 5-fold cross-validation is performed.
Its age groups include eight classes: [0, 2], [4, 6], [8, 12], [15, 20], [25, 32], [38, 43],
[48, 53], and [60, 100].
Performance analysis. We report age classification results and compare our
results to other methods in Table 2. For a baseline, we first train our baseline
model with only classification loss, which produces 60.5% of accuracy. When we
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Method Exact (%) 1-off (%)

CNN [9] 50.7± 5.1 84.7± 2.2
DEX [11] 55.7± 6.1 89.7± 1.8
Attention CNN [3] 61.8± 2.1 95.1± 0.03
Squared EMD [13] 62.2 94.3

Baseline (LC) 60.5± 2.2 95.0± 0.6
Ours (LC + LT ) 63.1± 1.0 96.7± 0.4

Table 2: Comparison to the state-of-the-art deep methods on the Adience bench-
mark. ‘1-off’ means that 1-off class miss classification is allowed as correct. For
‘exact’ results, we do not allow any mis-classification. Alongside the accuracy,
we report the standard error (±e) of 5-fold cross-validation results.

train the network with our method, we can clearly see the improvement of ours
over the baseline with about 3% of gap in exact and 2% in 1-off results. In regard
to the fact that other work [9, 11, 3] use LC (Eq. 9) for classification, we can
expect that adding our adaptive ranking loss (LT : Eq. 6) to their classification
loss (LC : Eq. 9) is able to further improve the performance. This concludes that
our scale-varying triplet loss acts as a reasonable objective function whether
labels are highly dense (i.e. regression), or not (i.e. classification).

4 Conclusion

We have proposed the adaptive, scale-varying ranking loss jointly used with the
classification loss for age estimation. Based on a simple intuition that a triplet
ranking loss is helpful for age feature learning, we adapt the conventional one
by introducing the relative triplet selection and the weighting scheme to im-
prove the performance of the joint objective for age estimation. By using our
proposed joint loss with the relative triplet sampling, we show that our adaptive
scale-varying ranking loss reduces the generalization error of a model and better
aligns the age features than the baseline. Lastly, our approach achieves meaning-
ful improvements over the state-of-the-art methods in both age regression and
classification tasks.

Much interesting future work lies ahead. While the proposed approach was
applied mainly to the estimation of facial age in this study, it is not restricted
only to this tested application. Since our work uses a relative ranking strategy, it
can be applied to other domains where a distance measure between ground-truth
labels exists.
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